

Date	Planne	ed://_			Daily Tutorial Sheet - 10				Expected Duration: 90 Min		
Actu	al Date	of Attempt : _	_/_/_		Level - 2				Exact Duration :		
116.	In whi	In which of the following there is ma				-pπ bor	nding ?				\odot
	(A)	NF_3	(B)	NI_3		(C)	BI_3	(D)	BF_3	
117.	The d	The d-orbital involved in the hybridization of central atom in \mbox{XeOF}_2 molecule is :									
	(A)	d_{z^2}	(B)	d_{x^2-v}	$_{2}$ and $\mathrm{d}_{\mathrm{z}^{2}}$	(C)	d_{xy}	(D)	d_{yz}	
118.		In which of the following ionisation processes, the bond order has increased and the magnetic behave has changed?									
	(A)	$C_2 \longrightarrow C_2^+$	(B)	NO-	\longrightarrow NO ⁺	(C)	${\rm O}_2 {\longrightarrow}$	O_2^+ (D)	$N_2 \longrightarrow N_2^+$	
119.	Which one of the following statements is correct?										\odot
	(A)	(A) Molecular hydrogen is paramagnetic				(B)	Molecular nitrogen is paramagnetic				
	(C)	(C) Molecular oxygen is paramagnetic (D) Molecular oxygen is diama								amagnetic	
120.	In the conversion of ${\rm N}_2^{}$ into ${\rm N}_2^{}^{}^{}$ the electron will be lost from which of the following molecular orbital ?										
	(A)	$\sigma^* 2p_{_{\scriptstyle Z}}$	(B)	$\sigma 2p_z$		(C)	$\pi 2p_x$	(D)	$\pi^* 2p_{_X}$	
121.	Which is the correct statement?										\odot
	(A)	(A) H_2^+ ion is more stable than H_2^- molecule									
	(B)	The bond dissociation energy for H_2^+ ion is + ve									
	(C)	The bond order of H_2^+ ion is 0.5 and hence H_2^+ ion does not exist									
	(D)	The electron density along a line joining the two centres of the hydrogen nuclei in H_2^+ will alway									
		be greater than at the corresponding points along a similar line for H_2									
*122.	Which of the following have fractional bond order and is(are) paramagnetic?										
	(A)	C_2^+	(B)	O_2^-		(C)	NO	(D)	CO	
123.		The sequence that correctly describes the relative bond strength pertaining to oxygen molecule and i cation or anion is:									
	(A)	$O_2^{2-} > O_2^- > O$	$_{2} > O_{2}^{+}$			(B)	$O_2 > O_2^+ >$	$O_2^- > O_2$	0^{2-}_{2}		
	(C) $O_2^+ > O_2^- > O_2^{2-} > O_2^-$					(D)	$O_2^+ > O_2^-$	$O_2^- > O_2$	$_2^{2-}$		
124.	The correct order of bond order value among the following is:										
	I.	NO ⁻ II.	NO ⁺	III.	NO	IV.	N_2	v.	NO^{2-}		
	The correct choice is:										
	(A)	I < IV < III < I	I < V			(B)	IV = II < I	< V < II	Ι		

 $\textbf{125.} \hspace{0.5cm} \textbf{Which of the following will participate in intermolecular H-bonding?} \\$

 $\mathrm{V} < \mathrm{I} < \mathrm{III} < \mathrm{IV} = \mathrm{II}$

(A) CH_2Cl_2 (B) $H_3C-C-CH_3$ (C) H_3PO_4 (D) PH_3

(C)

(D)

II < III < IV < I < V